不要小瞧心态的改变,那会让你重获新生。——人民日报
前言
虽然hadoop的HDFS理论上可以存储海量的数据.即使磁盘不够也是可以通过增加机器的方式扩展存储空间. 但是加机器是要花钱买的呀.所以,那群无聊的人就使用到了压缩的方式. 但是压缩的方式有很多种. 咱们mapreduce是需要切片的. 所以有哪些压缩是可以支持切片的呢?那些压缩格式的压缩速度更快呢? 那些压缩能够将数据压缩的更小呢? …
压缩概述
压缩技术能够有效减少底层存储系统(HDFS)读写字节数。压缩提高了网络带宽和磁盘空间的效率。在运行MR程序时,I/O操作、网络数据传输、Shuffle和Merge要花大量的时间,尤其是数据规模很大和工作负载密集的情况下,因此,使用数据压缩显得非常重要。
鉴于磁盘I/O和网络带宽是Hadoop的宝贵资源,数据压缩对于节省资源,最小化磁盘I/O和网络传输非常有帮助。可以在任意MapReduce阶段启用压缩。不过,尽管压缩与解压操作的CPU开销不高,其性能的提升和资源的节省并非没有代价。
压缩策略和原则
压缩是提高Hadoop运行效率的一种优化策略。
通过对Mapper、Reducer运行过程的数据进行压缩,以减少磁盘IO,提高MR程序运行速度。
注意:采用压缩技术减少了磁盘IO,但同时增加了CPU运算负担.所以,压缩特性运用得当能提高性能,但是运用不当也可能降低性能.
压缩基本原则:
(1) 运算密集型的job, 少用压缩
(2) IO密集型的job, 多用压缩
MR支持的压缩编码
Hadoop默认使用的是DEFLATE压缩格式 , bzip2 hadoop自带的
压缩格式 | hadoop自带? | 算法 | 文件扩展名 | 是否可切分 | 换成压缩格式后,原来的程序是否需要修改 |
---|---|---|---|---|---|
DEFLATE | 是,直接使用 | DEFLATE | .deflate | 否 | 和文本处理一样,不需要修改 |
Gzip | 是,直接使用 | DEFLATE | .gz | 否 | 和文本处理一样,不需要修改 |
bzip2 | 是,直接使用 | bzip2 | .bz2 | 是 | 和文本处理一样,不需要修改 |
LZO | 否,需要安装 | LZO | .lzo | 是 | 需要建索引,还需要指定输入格式 |
Snappy | 否,需要安装 | Snappy | .snappy | 否 | 和文本处理一样,不需要修改 |
为了支持多种压缩/解压缩算法,Hadoop引入了编码/解码器,如下表所示。
压缩格式 | 对应的编码/解码器 |
---|---|
DEFLATE | org.apache.hadoop.io.compress.DefaultCodec |
gzip | org.apache.hadoop.io.compress.GzipCodec |
bzip2 | org.apache.hadoop.io.compress.BZip2Codec |
LZO | com.hadoop.compression.lzo.LzopCodec |
Snappy | org.apache.hadoop.io.compress.SnappyCodec |
压缩性能的比较
压缩算法 | 原始文件大小 | 压缩文件大小 | 压缩速度 | 解压速度 |
---|---|---|---|---|
gzip | 8.3GB | 1.8GB | 17.5MB/s | 58MB/s |
bzip2 | 8.3GB | 1.1GB | 2.4MB/s | 9.5MB/s |
LZO | 8.3GB | 2.9GB | 49.3MB/s | 74.6MB/s |
http://google.github.io/snappy/
On a single core of a Core i7 processor in 64-bit mode, Snappy compresses at about 250 MB/sec or more and decompresses at about 500 MB/sec or more.
压缩方式选择
Gzip压缩
Bzip2压缩
Lzo压缩
Snappy压缩
压缩位置选择
压缩可以在MapReduce作用的任意阶段启用,如图:
压缩参数配置
要在Hadoop中启用压缩,可以配置如下参数:表4-10 配置参数
参数 | 默认值 | 阶段 | 建议 |
---|---|---|---|
io.compression.codecs (在core-site.xml中配置) | org.apache.hadoop.io.compress.DefaultCodec, org.apache.hadoop.io.compress.GzipCodec, org.apache.hadoop.io.compress.BZip2Codec | 输入压缩 | Hadoop使用文件扩展名判断是否支持某种编解码器 |
mapreduce.map.output.compress(在mapred-site.xml中配置) | false | mapper输出 | 这个参数设为true启用压缩 |
mapreduce.map.output.compress.codec(在mapred-site.xml中配置) | org.apache.hadoop.io.compress.DefaultCodec | mapper输出 | 企业多使用LZO或Snappy编解码器在此阶段压缩数据 |
mapreduce.output.fileoutputformat.compress(在mapred-site.xml中配置) | false | reducer输出 | 这个参数设为true启用压缩 |
mapreduce.output.fileoutputformat.compress.codec(在mapred-site.xml中配置) | org.apache.hadoop.io.compress. DefaultCodec | reducer输出 | 使用标准工具或者编解码器,如gzip和bzip2 |
mapreduce.output.fileoutputformat.compress.type(在mapred-site.xml中配置) | RECORD | reducer输出 | SequenceFile输出使用的压缩类型:NONE和BLOCK |
压缩实操案例
数据流的压缩和解压缩
测试一下如下压缩方式: 表4-11
DEFLATE | org.apache.hadoop.io.compress.DefaultCodec |
---|---|
gzip | org.apache.hadoop.io.compress.GzipCodec |
bzip2 | org.apache.hadoop.io.compress.BZip2Codec |
案例代码
Map输出端采用压缩
即使你的MapReduce的输入输出文件都是未压缩的文件,你仍然可以对Map任务的中间结果输出做压缩,因为它要写在硬盘并且通过网络传输到Reduce节点,对其压缩可以提高很多性能,这些工作只要设置两个属性即可,我们来看下代码怎么设置。
1.给大家提供的Hadoop源码支持的压缩格式有:BZip2Codec 、DefaultCodec
代码案例:
2.Mapper保持不变
代码案例:
3.Reducer保持不变
代码案例:
Reduce输出端采用压缩 Mapper和Reducer保持不变
基于Map输出端采用压缩案例处理。代码案例:
- 本文作者: xubatian
- 本文链接: http://xubatian.cn/Hadoop数据压缩/
- 版权声明: 本博客所有文章除特别声明外均为原创,采用 CC BY 4.0 CN协议 许可协议。转载请注明出处:https://www.xubatian.cn/